Industrial Control Systems (ICS) or SCADA networks are increasingly targeted by cyber-attacks as their architectures shifted from proprietary hardware, software and protocols to standard and open sources ones. Further...Industrial Control Systems (ICS) or SCADA networks are increasingly targeted by cyber-attacks as their architectures shifted from proprietary hardware, software and protocols to standard and open sources ones. Furthermore, these systems which used to be isolated are now interconnected to corporate networks and to the Internet. Among the countermeasures to mitigate the threats, anomaly detection systems play an important role as they can help detect even unknown attacks. Deep learning which has gained a great attention in the last few years due to excellent results in image, video and natural language processing is being used for anomaly detection in information security, particularly in SCADA networks. The salient features of the data from SCADA networks are learnt as hierarchical representation using deep architectures, and those learnt features are used to classify the data into normal or anomalous ones. This article is a review of various architectures such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Stacked Autoencoder (SAE), Long Short Term Memory (LSTM), or a combination of those architectures, for anomaly detection purpose in SCADA networks.展开更多
Anchor-based detectors are widely used in object detection.To improve the accuracy of object detection,multiple anchor boxes are intensively placed on the input image,yet.Most of which are invalid.Although the anchor-...Anchor-based detectors are widely used in object detection.To improve the accuracy of object detection,multiple anchor boxes are intensively placed on the input image,yet.Most of which are invalid.Although the anchor-free method can reduce the number of useless anchor boxes,the invalid ones still occupy a high proportion.On this basis,this paper proposes a multiscale center point object detection method based on parallel network to further reduce the number of useless anchor boxes.This study adopts the parallel network architecture of hourglass-104 and darknet-53 of which the first one outputs heatmaps to generate the center point for object feature location on the output attribute feature map of darknet-53.Combining feature pyramid and CIoU loss function,this algorithm is trained and tested on MSCOCO dataset,increasing the detection rate of target location and the accuracy rate of small object detection.Though resembling the state-of-the-art two-stage detectors in overall object detection accuracy,this algorithm is superior in speed.展开更多
With the expansion of wind speed data sets, decreasing model training time is of great significance to the time cost of wind speed prediction. And imperfection of the model evaluation system also affect the wind speed...With the expansion of wind speed data sets, decreasing model training time is of great significance to the time cost of wind speed prediction. And imperfection of the model evaluation system also affect the wind speed prediction. To address these challenges, a hybrid method based on feature extraction, nested shared weight long short-term memory(NSWLSTM) network and Gaussian process regression(GPR) was proposed. The feature extraction of wind speed promises the best performance of the model. NSWLSTM model reduces the training time of long short-term memory(LSTM) network and improves the prediction accuracy. Besides, it adopted a method combined NSWLSTM with GPR(NSWLSTM-GPR) to provide the probabilistic prediction of wind speed. The probabilistic prediction can provide information that deviates from the predicted value, which is conducive to risk assessment and optimal scheduling. The simulation results show that the proposed method can obtain high-precision point prediction, appropriate prediction interval and reliable probabilistic prediction results with shorter training time on the wind speed prediction.展开更多
With the rapid development of communication and computer,the individual identification technology of communication equipment has been brought to many application scenarios.The identification of the same type of electr...With the rapid development of communication and computer,the individual identification technology of communication equipment has been brought to many application scenarios.The identification of the same type of electronic equipment is of considerable significance,whether it is the identification of friend or foe in military applications,identity determination,radio spectrum management in civil applications,equipment fault diagnosis,and so on.Because of the limited-expression ability of the traditional electromagnetic signal representation methods in the face of complex signals,a new method of individual identification of the same equipment of communication equipment based on deep learning is proposed.The contents of this paper include the following aspects:(1)Considering the shortcomings of deep learning in processing small sample data,this paper provides a universal and robust feature template for signal data.This paper constructs a relatively complete signal template library from multiple perspectives,such as time domain and transform domain features,combined with high-order statistical analysis.Based on the inspiration of the image texture feature,characteristics of amplitude histogram of signal and the signal amplitude co-occurrence matrix(SACM)are proposed in this paper.These signal features can be used as a signal fingerprint template for individual identification.(2)Considering the limitation of the recognition rate of a single classifier,using the integrated classifier has achieved better generalization ability.The final average accuracy of 5 NRF24LE1 modules is up to 98%and solved the problem of individual identification of the same equipment of communication equipment under the condition of the small sample,low signal-to-noise ratio.展开更多
This paper presents an effective image classification algorithm based on superpixels and feature fusion.Differing from classical image classification algorithms that extract feature descriptors directly from the origi...This paper presents an effective image classification algorithm based on superpixels and feature fusion.Differing from classical image classification algorithms that extract feature descriptors directly from the original image,the proposed method first segments the input image into superpixels and,then,several different types of features are calculated according to these superpixels.To increase classification accuracy,the dimensions of these features are reduced using the principal component analysis(PCA)algorithm followed by a weighted serial feature fusion strategy.After constructing a coding dictionary using the nonnegative matrix factorization(NMF)algorithm,the input image is recognized by a support vector machine(SVM)model.The effectiveness of the proposed method was tested on the public Scene-15,Caltech-101,and Caltech-256 datasets,and the experimental results demonstrate that the proposed method can effectively improve image classification accuracy.展开更多
With the pervasive generation of information from a wide range of sensors and devices,there always exist a large number of input features in databases,thus complicating machine learning problem formulation.However,cer...With the pervasive generation of information from a wide range of sensors and devices,there always exist a large number of input features in databases,thus complicating machine learning problem formulation.However,certain features are relatively impertinent to specific problems,which may degrade the performances of classifiers in terms of prediction accuracy,sensitivity,specificity,and recall rate.The main goal of a multi-objective optimization problem is to identify the subsets of the given features.To this end,a hybrid cat swarm optimization(HCSO)algorithm is proposed in our paper for performance improvement of the basic cat swarm optimization(CSO)that incorporates guided and competitive&inherent characteristics into the original CSO.The performance of HCSO has been tested by finding the optimal feature subset for 15 benchmark datasets.The number of class labels for these datasets varies between 2 and 40.The time complexity analysis of both CSO and HCSO has also been evaluated.Moreover,the performance of the proposed algorithm has been compared with that of simple CSO and other state-ofthe-art techniques.The performances obtained by HCSO have an average 2.68%improvement with a standard deviation of 2.91.The maximum performance improvement is up to 10.09%in prediction accuracy.Tested on the same datasets,CSO has yielded improvements within the range of-7.27%to 8.51%with an average improvement 0.9%and standard deviation 3.96.The statistical tests carried out in the experiments prove that HCSO manifests a moderately better feature selection capacity than that of its counterparts.展开更多
For a large-scale palmprint identification system,it is necessary to speed up the identification process to reduce the response time and also to have a high rate of identification accuracy.In this paper,we propose a n...For a large-scale palmprint identification system,it is necessary to speed up the identification process to reduce the response time and also to have a high rate of identification accuracy.In this paper,we propose a novel hashing-based technique called orientation field code hashing for fast palmprint identification.By investigating hashing-based algorithms,we first propose a double-orientation encoding method to eliminate the instability of orientation codes and make the orientation codes more reasonable.Secondly,we propose a window-based feature measurement for rapid searching of the target.We explore the influence of parameters related to hashing-based palmprint identification.We have carried out a number of experiments on the Hong Kong Poly U large-scale database and the CASIA palmprint database plus a synthetic database.The results show that on the Hong Kong Poly U large-scale database,the proposed method is about 1.5 times faster than the state-of-the-art ones,while achieves the comparable identification accuracy.On the CASIA database plus the synthetic database,the proposed method also achieves a better performance on identification speed.展开更多
Positioning technology based on wireless network signals in indoor environments has developed rapidly in recent years as the demand for locationbased services continues to increase.Channel state information(CSI)can be...Positioning technology based on wireless network signals in indoor environments has developed rapidly in recent years as the demand for locationbased services continues to increase.Channel state information(CSI)can be used as location feature information in fingerprint-based positioning systems because it can reflect the characteristics of the signal on multiple subcarriers.However,the random noise contained in the raw CSI information increases the likelihood of confusion when matching fingerprint data.In this paper,the Dynamic Fusion Feature(DFF)is proposed as a new fingerprint formation method to remove the noise and improve the feature resolution of the system,which combines the pre-processed amplitude and phase data.Then,the improved edit distance on real sequence(IEDR)is used as a similarity metric for fingerprint matching.Based on the above studies,we propose a new indoor fingerprint positioning method,named DFF-EDR,for improving positioning performance.During the experimental stage,data were collected and analyzed in two typical indoor environments.The results show that the proposed localization method in this paper effectively improves the feature resolution of the system in terms of both fingerprint features and similarity measures,has good anti-noise capability,and effectively reduces the localization errors.展开更多
Spontaneous activity in the brain maintains an internal structured pattern that reflects the external environment,which is essential for processing information and developing perception and cognition.An essential prer...Spontaneous activity in the brain maintains an internal structured pattern that reflects the external environment,which is essential for processing information and developing perception and cognition.An essential prerequisite of spontaneous activity for perception is the ability to reverberate external information,such as by potentiation.Yet its role in the processing of potentiation in mouse superior colliculus(SC)neurons is less studied.Here,we used electrophysiological recording,optogenetics,and drug infusion methods to investigate the mechanism of potentiation in SC neurons.We found that visual experience potentiated SC neurons several minutes later in different developmental stages,and the similarity between spontaneous and visually-evoked activity increased with age.Before eye-opening,activation of retinal ganglion cells that expressed ChR2 also induced the potentiation of spontaneous activity in the mouse SC.Potentiation was dependenton stimulus number and showed feature selectivity for direction and orientation.Optogenetic activation of parvalbumin neurons in the SC attenuated the potentiation induced by visual experience.Furthermore,potentiation in SC neurons was blocked by inhibiting the glutamate transporter GLT1.These results indicated that the potentiation induced by a visual stimulus might play a key role in shaping the internal representation of the environment,and serves as a carrier for short-term memory consolidation.展开更多
Objective image quality assessment(IQA)plays an important role in various visual communication systems,which can automatically and efficiently predict the perceived quality of images.The human eye is the ultimate eval...Objective image quality assessment(IQA)plays an important role in various visual communication systems,which can automatically and efficiently predict the perceived quality of images.The human eye is the ultimate evaluator for visual experience,thus the modeling of human visual system(HVS)is a core issue for objective IQA and visual experience optimization.The traditional model based on black box fitting has low interpretability and it is difficult to guide the experience optimization effectively,while the model based on physiological simulation is hard to integrate into practical visual communication services due to its high computational complexity.For bridging the gap between signal distortion and visual experience,in this paper,we propose a novel perceptual no-reference(NR)IQA algorithm based on structural computational modeling of HVS.According to the mechanism of the human brain,we divide the visual signal processing into a low-level visual layer,a middle-level visual layer and a high-level visual layer,which conduct pixel information processing,primitive information processing and global image information processing,respectively.The natural scene statistics(NSS)based features,deep features and free-energy based features are extracted from these three layers.The support vector regression(SVR)is employed to aggregate features to the final quality prediction.Extensive experimental comparisons on three widely used benchmark IQA databases(LIVE,CSIQ and TID2013)demonstrate that our proposed metric is highly competitive with or outperforms the state-of-the-art NR IQA measures.展开更多
With the rapid increase of the amount of vehicles in urban areas,the pollution of vehicle emissions is becoming more and more serious.Precise prediction of the spatiotemporal evolution of urban traffic emissions plays...With the rapid increase of the amount of vehicles in urban areas,the pollution of vehicle emissions is becoming more and more serious.Precise prediction of the spatiotemporal evolution of urban traffic emissions plays a great role in urban planning and policy making.Most existing methods usually focus on estimating vehicle emissions at historical or current moments which cannot well meet the demands of future planning.Recent work has started to pay attention to the evolution of vehicle emissions at future moments using multiple attributes related to emissions,however,they are not effective and efficient enough in the combination and utilization of different inputs.To address this issue,we propose a joint framework to predict the future evolution of vehicle emissions based on the GPS trajectories of taxis with a multi-channel spatiotemporal network and the motor vehicle emission simulator(MOVES)model.Specifically,we first estimate the spatial distribution matrices with GPS trajectories through map-matching algorithms.These matrices can reflect the attributes related to the traffic status of road networks such as volume,speed and acceleration.Then,our multi-channel spatiotemporal network is used to efficiently combine three key attributes(volume,speed and acceleration)through the feature sharing mechanism and generate a precise prediction of them in the future period.Finally,we adopt an MOVES model to estimate vehicle emissions by integrating several traffic factors including the predicted traffic states,road networks and the statistical information of urban vehicles.We evaluate our model on the Xi′an taxi GPS trajectories dataset.Experiments show that our proposed network can effectively predict the temporal evolution of vehicle emissions.展开更多
文摘Industrial Control Systems (ICS) or SCADA networks are increasingly targeted by cyber-attacks as their architectures shifted from proprietary hardware, software and protocols to standard and open sources ones. Furthermore, these systems which used to be isolated are now interconnected to corporate networks and to the Internet. Among the countermeasures to mitigate the threats, anomaly detection systems play an important role as they can help detect even unknown attacks. Deep learning which has gained a great attention in the last few years due to excellent results in image, video and natural language processing is being used for anomaly detection in information security, particularly in SCADA networks. The salient features of the data from SCADA networks are learnt as hierarchical representation using deep architectures, and those learnt features are used to classify the data into normal or anomalous ones. This article is a review of various architectures such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Stacked Autoencoder (SAE), Long Short Term Memory (LSTM), or a combination of those architectures, for anomaly detection purpose in SCADA networks.
文摘Anchor-based detectors are widely used in object detection.To improve the accuracy of object detection,multiple anchor boxes are intensively placed on the input image,yet.Most of which are invalid.Although the anchor-free method can reduce the number of useless anchor boxes,the invalid ones still occupy a high proportion.On this basis,this paper proposes a multiscale center point object detection method based on parallel network to further reduce the number of useless anchor boxes.This study adopts the parallel network architecture of hourglass-104 and darknet-53 of which the first one outputs heatmaps to generate the center point for object feature location on the output attribute feature map of darknet-53.Combining feature pyramid and CIoU loss function,this algorithm is trained and tested on MSCOCO dataset,increasing the detection rate of target location and the accuracy rate of small object detection.Though resembling the state-of-the-art two-stage detectors in overall object detection accuracy,this algorithm is superior in speed.
基金supported by the National Key Research and Development Programe of China (2016YFB0901900)the National Natural Science Foundation of China (U1908213)+2 种基金the Fundamental the Research Funds for the Central Universities(N182303037)Colleges and Universities in Hebei Province Science Research Program (QN2020504)the Foundation of Northeastern University at Qinhuangdao (XNB201803)。
文摘With the expansion of wind speed data sets, decreasing model training time is of great significance to the time cost of wind speed prediction. And imperfection of the model evaluation system also affect the wind speed prediction. To address these challenges, a hybrid method based on feature extraction, nested shared weight long short-term memory(NSWLSTM) network and Gaussian process regression(GPR) was proposed. The feature extraction of wind speed promises the best performance of the model. NSWLSTM model reduces the training time of long short-term memory(LSTM) network and improves the prediction accuracy. Besides, it adopted a method combined NSWLSTM with GPR(NSWLSTM-GPR) to provide the probabilistic prediction of wind speed. The probabilistic prediction can provide information that deviates from the predicted value, which is conducive to risk assessment and optimal scheduling. The simulation results show that the proposed method can obtain high-precision point prediction, appropriate prediction interval and reliable probabilistic prediction results with shorter training time on the wind speed prediction.
基金This work was supported by the National natural science foundation of China(No:62071057)Beijing nature fund(No:3182028).The support is gratefully acknowledged.
文摘With the rapid development of communication and computer,the individual identification technology of communication equipment has been brought to many application scenarios.The identification of the same type of electronic equipment is of considerable significance,whether it is the identification of friend or foe in military applications,identity determination,radio spectrum management in civil applications,equipment fault diagnosis,and so on.Because of the limited-expression ability of the traditional electromagnetic signal representation methods in the face of complex signals,a new method of individual identification of the same equipment of communication equipment based on deep learning is proposed.The contents of this paper include the following aspects:(1)Considering the shortcomings of deep learning in processing small sample data,this paper provides a universal and robust feature template for signal data.This paper constructs a relatively complete signal template library from multiple perspectives,such as time domain and transform domain features,combined with high-order statistical analysis.Based on the inspiration of the image texture feature,characteristics of amplitude histogram of signal and the signal amplitude co-occurrence matrix(SACM)are proposed in this paper.These signal features can be used as a signal fingerprint template for individual identification.(2)Considering the limitation of the recognition rate of a single classifier,using the integrated classifier has achieved better generalization ability.The final average accuracy of 5 NRF24LE1 modules is up to 98%and solved the problem of individual identification of the same equipment of communication equipment under the condition of the small sample,low signal-to-noise ratio.
基金the National Key Research and Development Program of China under Grant No.2018AAA0103203.
文摘This paper presents an effective image classification algorithm based on superpixels and feature fusion.Differing from classical image classification algorithms that extract feature descriptors directly from the original image,the proposed method first segments the input image into superpixels and,then,several different types of features are calculated according to these superpixels.To increase classification accuracy,the dimensions of these features are reduced using the principal component analysis(PCA)algorithm followed by a weighted serial feature fusion strategy.After constructing a coding dictionary using the nonnegative matrix factorization(NMF)algorithm,the input image is recognized by a support vector machine(SVM)model.The effectiveness of the proposed method was tested on the public Scene-15,Caltech-101,and Caltech-256 datasets,and the experimental results demonstrate that the proposed method can effectively improve image classification accuracy.
基金Tata Realty-IT city-SASTRA Srinivasa Ramanujan Research Cell of SASTRA University for the financial support extended in this research work。
文摘With the pervasive generation of information from a wide range of sensors and devices,there always exist a large number of input features in databases,thus complicating machine learning problem formulation.However,certain features are relatively impertinent to specific problems,which may degrade the performances of classifiers in terms of prediction accuracy,sensitivity,specificity,and recall rate.The main goal of a multi-objective optimization problem is to identify the subsets of the given features.To this end,a hybrid cat swarm optimization(HCSO)algorithm is proposed in our paper for performance improvement of the basic cat swarm optimization(CSO)that incorporates guided and competitive&inherent characteristics into the original CSO.The performance of HCSO has been tested by finding the optimal feature subset for 15 benchmark datasets.The number of class labels for these datasets varies between 2 and 40.The time complexity analysis of both CSO and HCSO has also been evaluated.Moreover,the performance of the proposed algorithm has been compared with that of simple CSO and other state-ofthe-art techniques.The performances obtained by HCSO have an average 2.68%improvement with a standard deviation of 2.91.The maximum performance improvement is up to 10.09%in prediction accuracy.Tested on the same datasets,CSO has yielded improvements within the range of-7.27%to 8.51%with an average improvement 0.9%and standard deviation 3.96.The statistical tests carried out in the experiments prove that HCSO manifests a moderately better feature selection capacity than that of its counterparts.
基金supported in part by the National Natural Science Foundation of China(61806071)the Natural Science Foundation of Hebei Province(F2019202464,F2019202381)+2 种基金the Open Project Program of the National Laboratory of Pattern Recognition(NLPR)of China(201900043)Hebei Provincial Education Department Youth Foundation(QN2019207)the Technical Expert Project of Tianjin(19JCTPJC55800,19JCTPJC57000)。
文摘For a large-scale palmprint identification system,it is necessary to speed up the identification process to reduce the response time and also to have a high rate of identification accuracy.In this paper,we propose a novel hashing-based technique called orientation field code hashing for fast palmprint identification.By investigating hashing-based algorithms,we first propose a double-orientation encoding method to eliminate the instability of orientation codes and make the orientation codes more reasonable.Secondly,we propose a window-based feature measurement for rapid searching of the target.We explore the influence of parameters related to hashing-based palmprint identification.We have carried out a number of experiments on the Hong Kong Poly U large-scale database and the CASIA palmprint database plus a synthetic database.The results show that on the Hong Kong Poly U large-scale database,the proposed method is about 1.5 times faster than the state-of-the-art ones,while achieves the comparable identification accuracy.On the CASIA database plus the synthetic database,the proposed method also achieves a better performance on identification speed.
基金This work was financially supported by the National Key Research&Development Program of China under Grant No.2020YFC1511702the Beijing Municipal Natural Science Foundation under Grant No.L191003.
文摘Positioning technology based on wireless network signals in indoor environments has developed rapidly in recent years as the demand for locationbased services continues to increase.Channel state information(CSI)can be used as location feature information in fingerprint-based positioning systems because it can reflect the characteristics of the signal on multiple subcarriers.However,the random noise contained in the raw CSI information increases the likelihood of confusion when matching fingerprint data.In this paper,the Dynamic Fusion Feature(DFF)is proposed as a new fingerprint formation method to remove the noise and improve the feature resolution of the system,which combines the pre-processed amplitude and phase data.Then,the improved edit distance on real sequence(IEDR)is used as a similarity metric for fingerprint matching.Based on the above studies,we propose a new indoor fingerprint positioning method,named DFF-EDR,for improving positioning performance.During the experimental stage,data were collected and analyzed in two typical indoor environments.The results show that the proposed localization method in this paper effectively improves the feature resolution of the system in terms of both fingerprint features and similarity measures,has good anti-noise capability,and effectively reduces the localization errors.
基金supported by the National Natural Science Foundation of China(31771195,81790640 and 82021002)a Shanghai Municipal Science and Technology Major Project(2018SHZDZX01)+1 种基金ZJLab,Key Scientific Technological Innovation Research Project of the Ministry of Education,Sanming Project of Medicine in Shenzhen(SZSM202011015)Shanghai Health and Family Planning Commission(20164Y0096,20184Y0184)。
文摘Spontaneous activity in the brain maintains an internal structured pattern that reflects the external environment,which is essential for processing information and developing perception and cognition.An essential prerequisite of spontaneous activity for perception is the ability to reverberate external information,such as by potentiation.Yet its role in the processing of potentiation in mouse superior colliculus(SC)neurons is less studied.Here,we used electrophysiological recording,optogenetics,and drug infusion methods to investigate the mechanism of potentiation in SC neurons.We found that visual experience potentiated SC neurons several minutes later in different developmental stages,and the similarity between spontaneous and visually-evoked activity increased with age.Before eye-opening,activation of retinal ganglion cells that expressed ChR2 also induced the potentiation of spontaneous activity in the mouse SC.Potentiation was dependenton stimulus number and showed feature selectivity for direction and orientation.Optogenetic activation of parvalbumin neurons in the SC attenuated the potentiation induced by visual experience.Furthermore,potentiation in SC neurons was blocked by inhibiting the glutamate transporter GLT1.These results indicated that the potentiation induced by a visual stimulus might play a key role in shaping the internal representation of the environment,and serves as a carrier for short-term memory consolidation.
基金This work was supported by National Natural Science Foundation of China(Nos.61831015 and 61901260)Key Research and Development Program of China(No.2019YFB1405902).
文摘Objective image quality assessment(IQA)plays an important role in various visual communication systems,which can automatically and efficiently predict the perceived quality of images.The human eye is the ultimate evaluator for visual experience,thus the modeling of human visual system(HVS)is a core issue for objective IQA and visual experience optimization.The traditional model based on black box fitting has low interpretability and it is difficult to guide the experience optimization effectively,while the model based on physiological simulation is hard to integrate into practical visual communication services due to its high computational complexity.For bridging the gap between signal distortion and visual experience,in this paper,we propose a novel perceptual no-reference(NR)IQA algorithm based on structural computational modeling of HVS.According to the mechanism of the human brain,we divide the visual signal processing into a low-level visual layer,a middle-level visual layer and a high-level visual layer,which conduct pixel information processing,primitive information processing and global image information processing,respectively.The natural scene statistics(NSS)based features,deep features and free-energy based features are extracted from these three layers.The support vector regression(SVR)is employed to aggregate features to the final quality prediction.Extensive experimental comparisons on three widely used benchmark IQA databases(LIVE,CSIQ and TID2013)demonstrate that our proposed metric is highly competitive with or outperforms the state-of-the-art NR IQA measures.
基金This work was supported by National Key R&D Program of China under Grant(Nos.2018AAA0100800,2018YFE0106800)National Natural Science Foundation of China(Nos.61725304,61673361 and 62033012)Major Special Science and Technology Project of Anhui,China(No.912198698036).
文摘With the rapid increase of the amount of vehicles in urban areas,the pollution of vehicle emissions is becoming more and more serious.Precise prediction of the spatiotemporal evolution of urban traffic emissions plays a great role in urban planning and policy making.Most existing methods usually focus on estimating vehicle emissions at historical or current moments which cannot well meet the demands of future planning.Recent work has started to pay attention to the evolution of vehicle emissions at future moments using multiple attributes related to emissions,however,they are not effective and efficient enough in the combination and utilization of different inputs.To address this issue,we propose a joint framework to predict the future evolution of vehicle emissions based on the GPS trajectories of taxis with a multi-channel spatiotemporal network and the motor vehicle emission simulator(MOVES)model.Specifically,we first estimate the spatial distribution matrices with GPS trajectories through map-matching algorithms.These matrices can reflect the attributes related to the traffic status of road networks such as volume,speed and acceleration.Then,our multi-channel spatiotemporal network is used to efficiently combine three key attributes(volume,speed and acceleration)through the feature sharing mechanism and generate a precise prediction of them in the future period.Finally,we adopt an MOVES model to estimate vehicle emissions by integrating several traffic factors including the predicted traffic states,road networks and the statistical information of urban vehicles.We evaluate our model on the Xi′an taxi GPS trajectories dataset.Experiments show that our proposed network can effectively predict the temporal evolution of vehicle emissions.