The construction of charging service facilities is a very important factor in the popularization of electric vehicles. Therefore, the planning problems of electric vehicle charging station are urgent to be solved. Con...The construction of charging service facilities is a very important factor in the popularization of electric vehicles. Therefore, the planning problems of electric vehicle charging station are urgent to be solved. Considering the standard of natural environment, society, traffic, power grid and economy, an evaluation system is created for electric vehicle charging station project through 15 sub-standards. Planning model of charging station is constructed based on BP neural network adopted in the analysis. It is used for location and capacity prediction of charging station planning. By analyzing the model with data samples, a stable network structure is established and the feasibility of the model is verified in the charging station planning.展开更多
针对现有位置预测研究多数忽略时间和空间之间关联性的问题,提出一种基于时空特性的长短期记忆模型(ST-LSTM)。基于LSTM网络添加单独处理用户移动行为时空信息的时空门,并考虑用户签到的时间及空间因素,从而使模型具有时空特性。在ST-L...针对现有位置预测研究多数忽略时间和空间之间关联性的问题,提出一种基于时空特性的长短期记忆模型(ST-LSTM)。基于LSTM网络添加单独处理用户移动行为时空信息的时空门,并考虑用户签到的时间及空间因素,从而使模型具有时空特性。在ST-LSTM网络中引入个人修正因子,对每类用户的输出结果进行修正,在确保基本特性的基础上突出个性化,更好地学习每类用户的行为轨迹特征,同时在保证ST-LSTM网络特性的前提下给出 2种 ST-LSTM网络的简化变体模型。在公开数据集上的测试结果表明,与主流位置预测方法相比,该预测模型精确率、召回率、 F 1值都有明显提升。展开更多
文摘为了解决无人机(unmanned aerial vehicle,UAV)协作通信网络在完成任务时由于高机动性而会影响链路状态的问题,提出了一种基于UAV位置预测的信道中继选择算法。根据卡尔曼算法预测出UAV下一时刻的位置,提前判断链路优劣性,使更换UAV中继节点的时机更为精准。通过UAV源节点到UAV中继节点以及UAV中继节点到UAV目的节点的瞬时信道状态信息(channel state information,CSI)选出备选UAV中继节点集合。最优的备选UAV中继节点由贪婪算法计算而得。仿真结果证明了此方法的有效性,链路中断的概率比随机选择算法降低了10%,且链路更加稳定。
文摘The construction of charging service facilities is a very important factor in the popularization of electric vehicles. Therefore, the planning problems of electric vehicle charging station are urgent to be solved. Considering the standard of natural environment, society, traffic, power grid and economy, an evaluation system is created for electric vehicle charging station project through 15 sub-standards. Planning model of charging station is constructed based on BP neural network adopted in the analysis. It is used for location and capacity prediction of charging station planning. By analyzing the model with data samples, a stable network structure is established and the feasibility of the model is verified in the charging station planning.
文摘针对现有位置预测研究多数忽略时间和空间之间关联性的问题,提出一种基于时空特性的长短期记忆模型(ST-LSTM)。基于LSTM网络添加单独处理用户移动行为时空信息的时空门,并考虑用户签到的时间及空间因素,从而使模型具有时空特性。在ST-LSTM网络中引入个人修正因子,对每类用户的输出结果进行修正,在确保基本特性的基础上突出个性化,更好地学习每类用户的行为轨迹特征,同时在保证ST-LSTM网络特性的前提下给出 2种 ST-LSTM网络的简化变体模型。在公开数据集上的测试结果表明,与主流位置预测方法相比,该预测模型精确率、召回率、 F 1值都有明显提升。